Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
J Hazard Mater ; 470: 134224, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583198

RESUMO

This study employs a combination of bibliometric and epidemiological methodologies to investigate the relationship between metal exposure and glucose homeostasis. The bibliometric analysis quantitatively assessed this field, focusing on study design, predominant metals, analytical techniques, and citation trends. Furthermore, we analyzed cross-sectional data from Beijing, examining the associations between 14 blood metals and 6 glucose homeostasis markers using generalized linear models (GLM). Key metals were identified using LASSO-PIPs criteria, and Bayesian kernel machine regression (BKMR) was applied to assess metal mixtures, introducing an "Overall Positive/Negative Effect" concept for deeper analysis. Our findings reveal an increasing research interest, particularly in selenium, zinc, cadmium, lead, and manganese. Urine (27.6%), serum (19.0%), and whole blood (19.0%) were the primary sample types, with cross-sectional studies (49.5%) as the dominant design. Epidemiologically, significant associations were found between 9 metals-cobalt, copper, lithium, manganese, nickel, lead, selenium, vanadium, zinc-and glucose homeostasis. Notably, positive-metal mixtures exhibited a significant overall positive effect on insulin levels, and notable interactions involving nickel were identified. These finding not only map the knowledge landscape of research in this domain but also introduces a novel perspective on the analysis strategies for metal mixtures.


Assuntos
Bibliometria , Glicemia , Homeostase , Humanos , Glicemia/análise , Metais/análise , Estudos Transversais , Estudos Epidemiológicos , Teorema de Bayes
2.
Chin Med Sci J ; 39(1): 69-73, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38449318

RESUMO

This data article describes the "Typical Regional Activity Patterns" (TRAP) dataset, which is based on the Tackling Key Problems in Air Pollution Control Program. In order to explore the interaction between air pollution and physical activity, we collected activity patterns of 9,221 residents with different occupations and lifestyles for three consecutive days in typical regions (Jinan and Baoding) where air pollutant concentrations were higher than those in neighboring areas. The TRAP dataset consists of two aspects of information: demographic indicators (personal information, occupation, personal habits, and living situation) and physical activity pattern data (activity location and intensity); additionally, the exposure measures of physical activity patterns are included, which data users can match to various endpoints for their specific purpose. This dataset provides evidence for exploring the attributes of activity patterns of residents in northern China and for interdisciplinary researchers to develop strategies and measures for health education and health promotion.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Estações do Ano , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China/epidemiologia
3.
J Colloid Interface Sci ; 664: 360-370, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479272

RESUMO

Manganese sulfide (MnS) is a promising converion-type anode for sodium storage, owing to the virtues of high theoretical capacity, coupled with it crustal abundance and cost-effectiveness. Nevertheless, MnS suffers from inadequate electronic conductivity, sluggish Na+ reaction kinetics and considerable volume variation during discharge/charge process, thereby impeding its rate capability and capacity retention. Herein, a novel lamellar heterostructured composite of Fe-doped MnS nanoparticles/positively charged reduced graphene oxide (Fe-MnS/PG) was synthesized to overcome these issues. The Fe-doping can accelerate the ion/electron transfer, endowing fast electrochemical kinetics of MnS. Meanwhile, the graphene space confinement with strong MnSC bond interactions can facilite the interfacial electron transfer, hamper volume expansion and aggregation of MnS nanoparticles, stabilizing the structural integrity, thus improving the Na+ storage reversibility and cyclic stability. Combining the synergistic effect of Fe-doping and space confinement with strong MnSC bond interactions, the as-produced Fe-MnS/PG anode presents a remarkable capacity of 567 mAh/g at 0.1 A/g and outstanding rate performance (192 mAh/g at 10 A/g). Meanwhile, the as-assembled sodium-ion capacitor (SIC) can yield a high energy density of 119 Wh kg-1 and a maximum power density of 17500 W kg-1, with capacity retention of 77 % at 1 A/g after 5000 cycles. This work offers a promising strategy to develop MnS-based practical SICs with high energy and long lifespan, and paves the way for fabricating advanced anode materials.

4.
Ecotoxicol Environ Saf ; 274: 116178, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461577

RESUMO

BACKGROUND: The impact of heavy metals on liver function has been examined in numerous epidemiological studies. However, these findings lack consistency and longitudinal validation. METHODS: In this study, we conducted three follow-up surveys with 426 participants from Northeast China. Blood and urine samples were collected, along with questionnaire information. Urine samples were analyzed for concentrations of four metals (chromium [Cr], cadmium [Cd], lead [Pb], and manganese [Mn]), while blood samples were used to measure five liver function indicators (alanine aminotransferase [ALT], aspartate aminotransferase [AST], albumin [ALB], globulin [GLB], and total protein [TP]). We utilized a linear mixed-effects model (LME) to explore the association between individual heavy metal exposure and liver function. Joint effects of metal mixtures were investigated using quantile g-computation and Bayesian kernel machine regression (BKMR). Furthermore, we employed BKMR and Marginal Effect models to examine the interaction effects between metals on liver function. RESULTS: The LME results demonstrated a significant association between urinary heavy metals (Cr, Cd, Pb, and Mn) and liver function markers. BKMR results indicated positive associations between heavy metal mixtures and ALT, AST, and GLB, and negative associations with ALB and TP, which were consistent with the g-comp results. Synergistic effects were observed between Cd-Cr on ALT, Mn-Cr and Cr-Pb on ALB, while an antagonistic effect was found between Mn-Pb and Mn-Cd on ALB. Additionally, synergistic effects were observed between Mn-Cr on GLB and Cd-Cr on TP. Furthermore, a three-way antagonistic effect of Mn-Pb-Cr on ALB was identified. CONCLUSION: Exposure to heavy metals (Cr, Cd, Mn, Pb) is associated with liver function markers, potentially leading to liver damage. Moreover, there are joint and interaction effects among these metals, which warrant further investigation at both the population and mechanistic levels.


Assuntos
Cádmio , Metais Pesados , Humanos , Cádmio/toxicidade , Teorema de Bayes , Chumbo/farmacologia , Metais Pesados/farmacologia , Manganês/toxicidade , Cromo/farmacologia , Fígado
5.
Chemistry ; : e202400227, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501673

RESUMO

Two-dimensional semiconductor-based nanomaterials have shown to be an effective substrate for Surface-enhanced Raman Scattering (SERS) spectroscopy. However, the enhancement factor (EF) tends to be relatively weak compared to that of noble metals and does not allow for trace detection of molecules. In this work, we report the successful preparation of two-dimensional (2D) amorphous non-van der Waals heterostructures MoO3-x/GDYO nanomaterials using supercritical CO2. Due to the synergistic effect of the localized surface plasmon resonance (LSPR) effect and the charge transfer effect, it exhibits excellent SERS performance in the detection of methylene blue (MB) molecules, with a detection limit as low as 10-14 M while the enhancement factor (EF) can reach an impressive 2.55×1011. More importantly, the chemical bond bridging at the MoO3-x/GDYO heterostructures interface can accelerate the electron transfer between the interfaces, and the large number of defective surface structures on the heterostructures surface facilitates the chemisorption of MB molecules. And the charge recombination lifetime can be proved by a ~1.7-fold increase during their interfacial electron-transfer process for MoO3-x/GDYO@MB mixture, achieving highly sensitive SERS detection.

6.
Cell Res ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467743

RESUMO

Neural signals can significantly influence cancer prognosis. However, how cancer cells may proactively modulate the nervous system to benefit their own survival is incompletely understood. In this study, we report an overlapping pattern of brain responses, including that in the paraventricular nucleus of the hypothalamus, in multiple mouse models of peripheral cancers. A multi-omic screening then identifies leukemia inhibitory factor (LIF) and galectin-3 (Gal3) as the key cytokines released by these cancer cell types to trigger brain activation. Importantly, increased plasma levels of these two cytokines are observed in patients with different cancers. We further demonstrate that pharmacologic or genetic blockage of cancer cell-derived LIF or Gal3 signaling abolishes the brain responses and strongly inhibits tumor growth. In addition, ablation of peripheral sympathetic actions can similarly restore antitumor immunity. These results have elucidated a novel, shared mechanism of multiple cancer cell types hijacking the nervous system to promote tumor progression.

7.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396970

RESUMO

Patients with Alzheimer's disease (AD) often present with imaging features indicative of small-vessel injury, among which, white-matter hyperintensities (WMHs) are the most prevalent. However, the underlying mechanism of the association between AD and small-vessel injury is still obscure. The aim of this study is to investigate the mechanism of small-vessel injury in AD. Differential gene expression analyses were conducted to identify the genes related to WMHs separately in mild cognitive impairment (MCI) and cognitively normal (CN) subjects from the ADNI database. The WMH-related genes identified in patients with MCI were considered to be associated with small-vessel injury in early AD. Functional enrichment analyses and a protein-protein interaction (PPI) network were performed to explore the pathway and hub genes related to the mechanism of small-vessel injury in MCI. Subsequently, the Boruta algorithm and support vector machine recursive feature elimination (SVM-RFE) algorithm were performed to identify feature-selection genes. Finally, the mechanism of small-vessel injury was analyzed in MCI from the immunological perspectives; the relationship of feature-selection genes with various immune cells and neuroimaging indices were also explored. Furthermore, 5×FAD mice were used to demonstrate the genes related to small-vessel injury. The results of the logistic regression analyses suggested that WMHs significantly contributed to MCI, the early stage of AD. A total of 276 genes were determined as WMH-related genes in patients with MCI, while 203 WMH-related genes were obtained in CN patients. Among them, only 15 genes overlapped and were thus identified as the crosstalk genes. By employing the Boruta and SVM-RFE algorithms, CD163, ALDH3B1, MIR22HG, DTX2, FOLR2, ALDH2, and ZNF23 were recognized as the feature-selection genes linked to small-vessel injury in MCI. After considering the results from the PPI network, CD163 was finally determined as the critical WMH-related gene in MCI. The expression of CD163 was correlated with fractional anisotropy (FA) values in regions that are vulnerable to small-vessel injury in AD. The immunostaining and RT-qPCR results from the verifying experiments demonstrated that the indicators of small-vessel injury presented in the cortical tissue of 5×FAD mice and related to the upregulation of CD163 expression. CD163 may be the most pivotal candidates related to small-vessel injury in early AD.


Assuntos
Doença de Alzheimer , Antígenos de Diferenciação Mielomonocítica , Disfunção Cognitiva , Receptor 2 de Folato , Substância Branca , Animais , Humanos , Camundongos , Aldeído-Desidrogenase Mitocondrial , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/psicologia , Perfilação da Expressão Gênica , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Fatores de Transcrição , Substância Branca/diagnóstico por imagem , Antígenos de Diferenciação Mielomonocítica/metabolismo
8.
Heliyon ; 10(4): e25861, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384504

RESUMO

Objective: Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disease associated with a high incidence of complications in the mid and late stages of gestation. This study investigates differences in the composition of intestinal flora among pregnant women diagnosed with ICP, employing Illumina MiSeq high-throughput sequencing technology. Methods: This case-control study obtained patient data from the hospital information system (HIS) and the laboratory information system (LIS). Fecal samples were collected from 25 pregnant women who did not undergo intestinal preparation before delivery between December 2020 and March 2021. Whole-genome analysis was performed. PCR was used to amplify the 16S rRNA V3-V4 variable region, which was then sequenced. Alpha and beta diversity were computed, and the maternal intestinal flora's abundance and composition characteristics were analyzed. Differences in intestinal flora between the two sample groups were examined. Results: Bacteroides and Proteobacteria exhibited positive correlations with TBIL and IBIL. Betaproteobacteria, Gammaproteobacteria, and Erysipeiotrichi showed positive correlations with TBIL, IBIL, and DBIL, while Lactobacillus, Delftia, and Odoribacter demonstrated positive correlations with ALT. Conclusion: The ICP group displayed significantly higher levels of total bile acid and ALT compared to the control group. The intestinal flora composition comprised four primary phyla: Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria. ICP patients exhibited a lower relative abundance of intestinal flora across different levels of community composition when compared to the control group. Specific correlations between certain intestinal flora and clinical liver parameters were identified.

9.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255866

RESUMO

Adipose-derived stem cells (ASCs) possess therapeutic potential for ischemic brain injury, and the chemokine CXCL12 has been shown to enhance their functional properties. However, the cumulative effects of ASCs when combined with various structures of CXCL12 on ischemic stroke and its underlying molecular mechanisms remain unclear. In this study, we genetically engineered mouse adipose-derived ASCs with CXCL12 variants and transplanted them to the infarct region in a mice transient middle cerebral artery occlusion (tMCAO) model of stroke. We subsequently compared the post-ischemic stroke efficacy of ASC-mCXCL12 with ASC-dCXCL12, ASC-wtCXCL12, and unmodified ASCs. Neurobehavior recovery was assessed using modified neurological severity scores, the hanging wire test, and the elevated body swing test. Changes at the tissue level were evaluated through cresyl violet and immunofluorescent staining, while molecular level alterations were examined via Western blot and real-time PCR. The results of the modified neurological severity score and cresyl violet staining indicated that both ASC-mCXCL12 and ASC-dCXCL12 treatment enhanced neurobehavioral recovery and mitigated brain atrophy at the third and fifth weeks post-tMCAO. Additionally, we observed that ASC-mCXCL12 and ASC-dCXCL12 promoted angiogenesis and neurogenesis, accompanied by an increased expression of bFGF and VEGF in the peri-infarct area of the brain. Notably, in the third week after tMCAO, the ASC-mCXCL12 exhibited superior outcomes compared to ASC-dCXCL12. However, when treated with the CXCR4 antagonist AMD3100, the beneficial effects of ASC-mCXCL12 were reversed. The AMD3100-treated group demonstrated worsened neurological function, aggravated edema volume, and brain atrophy. This outcome is likely attributed to the interaction of monomeric CXCL12 with CXCR4, which regulates the recruitment of bFGF and VEGF. This study introduces an innovative approach to enhance the therapeutic potential of ASCs in treating ischemic stroke by genetically engineering them with the monomeric structure of CXCL12.


Assuntos
Quimiocina CXCL12 , AVC Isquêmico , Células-Tronco Mesenquimais , Transplante de Células-Tronco , Animais , Camundongos , Benzilaminas/farmacologia , Quimiocina CXCL12/genética , Ciclamos/farmacologia , Engenharia Genética , AVC Isquêmico/terapia , Células-Tronco Mesenquimais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Toxicol In Vitro ; 95: 105746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38043628

RESUMO

N6-methyladenosine (m6A) modification, the most abundant methylation modification on eukaryotic mRNAs, was implicated in the tumourigenesis. This study aimed to explore the role of methyltransferase like 3 (METTL3) in triple-negative breast cancer progression and its underlying mechanisms. FAM83D was markedly elevated in triple-negative breast cancer tissues and cells, and high expression of FAM83D was related to the poor prognosis of triple-negative breast cancer patients. FAM83D knockdown significantly retarded cell proliferation, invasion, stemness, and accelerated cell apoptosis in triple-negative breast cancer cells. On the contrary, overexpression of FAM83D promoted the malignant behaviors. METTL3 could interact with FAM83D and mediate m6A modification of FAM838D. Moreover, METTL3 positively regulated FAM83D expression, and FAM83D overexpression could block the inhibition effects of MRTTL3 knockdown on the malignant behaviors. METTL3 knockdown decreased FAM83D expression to inhibit the Wnt/ß-catenin pathway. In addition, knockdown of FAM83D also showed the repressive effects on tumor growth in triple-negative breast cancer in vivo. These findings suggested that METTL3 could modulate FAM83D protein expression through m6A modification to aggravate triple-negative breast cancer progression via the Wnt/ß-catenin pathway.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , beta Catenina/genética , beta Catenina/metabolismo , Transformação Celular Neoplásica , Via de Sinalização Wnt , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo
11.
Adv Sci (Weinh) ; 11(5): e2303692, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975158

RESUMO

The preparation of 2D magnetoelectric (ME) nanomaterials with strong ME coupling is crucial for the fast reading and writing processes in the next generation of storage devices. Herein, 2D BaTiO3 (BTO)-CoFe2 O4 (CFO) ME nanocomposites are prepared through a substrate-free coupling strategy using supercritical CO2 . Such 2D BTO-CFO with strong coupling is built through alternating in-plane and out-of-plane epitaxy stacking, leading to remarkable mutual biaxial strain effects for spin-lattice coupling. As a results, such strain effect significantly enhances the ferroelectricity of BTO and the ferrimagnetism of CFO, where an unexceptionally high ME coupling coefficient of (325.8 mV cm-1  Oe-1 ) is obtained for the BTO-CFO nanocomposites.

12.
Alzheimers Dement ; 20(1): 399-409, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37654085

RESUMO

PURPOSES: To establish a normative range of MemTrax (MTx) metrics in the Chinese population. METHODS: The correct response percentage (MTx-%C) and mean response time (MTx-RT) were obtained and the composite scores (MTx-Cp) calculated. Generalized additive models for location, shape and scale (GAMLSS) were applied to create percentile curves and evaluate goodness of fit, and the speed-accuracy trade-off was investigated. RESULTS: 26,633 subjects, including 13,771 (51.71%) men participated in this study. Age- and education-specific percentiles of the metrics were generated. Q tests and worm plots indicated adequate fit for models of MTx-RT and MTx-Cp. Models of MTx-%C for the low and intermediate education fit acceptably, but not well enough for a high level of education. A significant speed-accuracy trade-off was observed for MTx-%C from 72 to 94. CONCLUSIONS: GAMLSS is a reliable method to generate smoothed age- and education-specific percentile curves of MTx metrics, which may be adopted for mass screening and follow-ups addressing Alzheimer's disease or other cognitive diseases. HIGHLIGHTS: GAMLSS was applied to establish nonlinear percentile curves of cognitive decline. Subjects with a high level of education demonstrate a later onset and slower decline of cognition. Speed-accuracy trade-off effects were observed in a subgroup with moderate accuracy. MemTrax can be used as a mass-screen instrument for active cognition health management advice.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Disfunção Cognitiva , Masculino , Humanos , Feminino , Transtornos Cognitivos/diagnóstico , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/psicologia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Cognição , Escolaridade
13.
Adv Sci (Weinh) ; 11(9): e2305558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115755

RESUMO

2D nanomaterials play a critical role in realizing high-performance flexible electrodes for wearable energy storge devices, owing to their merits of large surface area, high conductivity and high strength. The electrode is a complex system and the performance is determined by multiple and interrelated factors including the intrinsic properties of materials and the structures at different scales from macroscale to atomic scale. Multiscale design strategies have been developed to engineer the structures to exploit full potential and mitigate drawbacks of 2D materials. Analyzing the design strategies and understanding the working mechanisms are essential to facilitate the integration and harvest the synergistic effects. This review summarizes the multiscale design strategies from macroscale down to micro/nano-scale structures and atomic-scale structures for developing 2D nanomaterials-based flexible electrodes. It starts with brief introduction of 2D nanomaterials, followed by analysis of structural design strategies at different scales focusing on the elucidation of structure-property relationship, and ends with the presentation of challenges and future prospects. This review highlights the importance of integrating multiscale design strategies. Finding from this review may deepen the understanding of electrode performance and provide valuable guidelines for designing 2D nanomaterials-based flexible electrodes.

14.
Chemistry ; 30(15): e202303391, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38116857

RESUMO

Surface Enhanced Raman spectroscopy (SERS) is a molecular-specific analytical technique with various applications. Although electromagnetic (EM) and chemical (CM) mechanisms have been proposed to be the main origins of SERS, exploring highly sensitive SERS substrates with well-defined mechanistic pathways remains challenging. Since surface and electronic structures of substrates were crucial for SERS activity, zero-valent transition metals (Fe and Cu) were intercalated into MoO3 to modulate its surface and electronic structures, leading to unexceptional high enhancement factors (1.0×108 and 1.1×1010 for Fe-MoO3 and Cu-MoO3 , respectively) with decent reproducibility and stability. Interestingly, different mechanistic pathways (CM and EM) were proposed for Fe-MoO3 and Cu-MoO3 according to mechanistic investigations. The different mechanisms of Fe-MoO3 and Cu-MoO3 were rationalized by the electronic structures of the intercalated Fe(0) and Cu(0), which modulates the surface and electronic structures of Fe-MoO3 and Cu-MoO3 to differentiate their SERS mechanisms.

15.
J Belg Soc Radiol ; 107(1): 85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928053

RESUMO

Teaching Point: Pseudoangiomatous stromal hyperplasia (PASH) is a rare benign breast condition that can mimic the appearance of breast cancer on imaging studies.

16.
Exp Gerontol ; 183: 112318, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37913946

RESUMO

Sarcopenia involves in the loss of muscle mass associated with aging, which is the major cause of progressive muscle weakness and deterioration in older adults. Muscle atrophy is a direct presentation of sarcopenia, and it greatly contributes to the decline in quality of life among older adults. Neuromuscular junction (NMJ) stability is the key link to maintain muscle function. Besides, the degenerative change of NMJ promotes the process of muscle atrophy in the elderly. Based on previous transcriptome sequencing and bioinformatics analyses of aged muscle, this study used the 18-month-old aged mouse model and the 6-month-old young mouse model to deliberate the role and underlying mechanisms of Cullin-3 (Cul3) in age-related muscle atrophy. The results of reverse transcriptase polymerase chain reaction (RT-PCR) and immunoblotting analysis showed that the expression of CUL3 increased in aged muscle tissue, while the expression level of postsynaptic membrane nicotinic acetylcholine receptors (nAChRs) decreased significantly, which manfested a negative correlation. Meanwhile, immunofluorescence demonstrated that Cul3 was highly expressed in senile muscle NMJ. The results of ubiquitin indicated that the ubiquitin level of aged muscle nAChRs was evidently increased. Co-immunoprecipitation furtherly verified the correlation between Cul3 and nAChRs. Taken together, Cul3 may mediate the ubiquitination degradation of nAChRs protein at the NMJ site in aged mice, leading to NMJ degeneration and accelerated atrophy of fast-twitch muscle fibers in aged muscle. As a prominent element to maintain the stability of NMJ, Cul3 is supposed to be one of candidate intervention targets in sarcopenia.


Assuntos
Receptores Nicotínicos , Sarcopenia , Animais , Camundongos , Proteínas Culina/genética , Proteínas Culina/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Junção Neuromuscular/fisiologia , Qualidade de Vida , Receptores Nicotínicos/metabolismo , Sarcopenia/patologia , Ubiquitinação , Ubiquitinas/metabolismo
17.
Small ; : e2305641, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914667

RESUMO

As a remarkable structure, 2D magnetic heterojunctions have attracted researchers' attention owing to their controlled manipulation in the electronic device. However, successful fabrication as well as modulation of their structure and compound remain challenging. Herein, a novel method is designed to obtain a CoCl2 /Co3 O4 heterojunction on Si/SiO2 substrate with the assistance of supercritical CO2 (SC CO2 ), and the as-fabricated sample has significantly increased coercivity and saturation magnetization, which is 11 times higher than pure Co3 O4 . Further, it can be found that the CO2 pressure has the decisive effect on the saturation magnetization of the sample. Therefore, it suggests that the tunable electronic-magnetic device can be anticipated to be obtained in the future.

18.
Mol Breed ; 43(11): 81, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37965378

RESUMO

Accurately identifying varieties with targeted agronomic traits was thought to contribute to genetic selection and accelerate rice breeding progress. Genomic selection (GS) is a promising technique that uses markers covering the whole genome to predict the genomic-estimated breeding values (GEBV), with the ability to select before phenotypes are measured. To choose the appropriate GS models for breeding work, we analyzed the predictability of nine agronomic traits measured from a population of 459 diverse rice varieties. By the comparison of eight representative GS models, we found that the prediction accuracies ranged from 0.407 to 0.896, with reproducing kernel Hilbert space (RKHS) having the highest predictive ability in most traits. Further results demonstrated the predictivity of GS is altered by several factors. Moreover, we assessed the method of integrating genome-wide association study (GWAS) into various GS models. The predictabilities of GS combined peak-associated markers generated from six different GWAS models were significantly different; a recommendation of Mixed Linear Model (MLM)-RKHS was given for the GWAS-GS-integrated prediction. Finally, based on the above result, we experimented with applying the P-values obtained from optimal GWAS models into ridge regression best linear unbiased prediction (rrBLUP), which benefited the low predictive traits in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01423-y.

19.
Environ Sci Pollut Res Int ; 30(59): 123226-123236, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981604

RESUMO

Published literature considering the association between ambient air pollution and blood pressure is highly inconsistent, which may be explained by the different proportions of susceptible subpopulations. We hypothesized that hypertensive patients are more sensitive to air pollution due to the disruption of neurohumoral system. The study aimed to reveal the association between PM2.5 and its carbon components and blood pressure, and whether this association is modified by hypertension status. We conducted a panel study in Beijing, China. Four repeated measurements were performed from 2016 to 2018. Linear mixed-effects models and generalized additive mixed models were performed to investigate the associations between PM2.5 and its carbon components and blood pressure. Subgroup analyses were performed by hypertension status to reveal potential effect modification. Among hypertensive patients, for every 1 µg/m3 increment of PM2.5, TC, OC, and EC in 1-day to 2-day MA, SBP increased from 0.16 mmHg (95% CI, 0.03 to 0.29) to 6.75 mmHg (95% CI, 2.82 to 10.68), and PP increased from 0.14 mmHg (95% CI, 0.02 to 0.26) to 6.03% (95% CI, 2.46 to 9.59%), but no significant association was observed among non-hypertensive subjects. The p values for the interaction between pollutants and hypertension status in 1-day to 2-day MA were less than 0.05. These findings suggest that hypertensive patients may be more susceptible to the adverse effects of air pollution than non-hypertensive subjects, which might provide guidance to hypertensive patients living in areas with high levels of particle pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hipertensão , Humanos , Pequim , Pressão Sanguínea , Poluentes Atmosféricos/análise , Material Particulado/análise , Carbono/análise , Exposição Ambiental/análise , Poluição do Ar/análise , Hipertensão/epidemiologia , China
20.
Small ; : e2308187, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016073

RESUMO

Spintronic devices work by manipulating the spin of electrons other than charge transfer, which is of revolutionary significance and can largely reduce energy consumption in the future. Herein, ultrathin two-dimensional (2D) non-van der Waals (non-vdW) γ-Ga2 O3 with room temperature ferromagnetism is successfully obtained by using supercritical CO2 (SC CO2 ). The stress effect of SC CO2 under different pressures selectively modulates the orientation and strength of covalent bonds, leading to the change of atomic structure including lattice expansion, introduction of O vacancy, and transition of Ga-O coordination (GaO4 and GaO6 ). Magnetic measurements show that pristine γ-Ga2 O3 is nonferromagnetic, whereas the SC CO2 treated γ-Ga2 O3 exhibits obvious ferromagnetic behavior with an optimal magnetization of 0.025 emu g-1 and a Curie temperature of 300 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...